Optimal Rates of Convergence for Convex Set Estimation from Support Functions by Adityanand Guntuboyina

نویسنده

  • A. GUNTUBOYINA
چکیده

The function hK is called the support function of K because it provides information on support hyperplanes and halfspaces of K . Indeed, every support halfspace of K is of the form {x :x · u≤ hK(u)} for some u ∈ Sd−1 and since K equals the intersection of all its support halfspaces, the function hK uniquely determines K . For a proof of this and other elementary properties of the support function, see Schneider [26], Section 1.7, or Rockafellar [25], Section 13. We consider the problem of estimating an unknown compact, convex set K from observations (u1, Y1), . . . , (un,Yn) drawn according to the model Yi = hK(ui)+ ξi for i = 1, . . . , n, (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L1 Covering Numbers for Uniformly Bounded Convex Functions

In this paper we study the covering numbers of the space of convex and uniformly bounded functions in multi-dimension. We find optimal upper and lower bounds for the -covering number M(C([a, b], B), ;L1) in terms of the relevant constants, where d ≥ 1, a < b ∈ R, B > 0, and C([a, b], B) denotes the set of all convex functions on [a, b] that are uniformly bounded byB. We summarize previously kno...

متن کامل

Adaptive Estimation of Planar Convex Sets

In this paper, we consider adaptive estimation of an unknown planar compact, convex set from noisy measurements of its support function. Both the problem of estimating the support function at a point and that of estimating the whole convex set are studied. For pointwise estimation, we consider the problem in a general non-asymptotic framework, which evaluates the performance of a procedure at e...

متن کامل

Minimax Lower Bounds

Minimax Lower Bounds Adityanand Guntuboyina 2011 This thesis deals with lower bounds for the minimax risk in general decision-theoretic problems. Such bounds are useful for assessing the quality of decision rules. After providing a unified treatment of existing techniques, we prove new lower bounds which involve f -divergences, a general class of dissimilarity measures between probability measu...

متن کامل

Covering numbers of $L_p$-balls of convex sets and functions

We prove bounds for the covering numbers of classes of convex functions and convex sets in Euclidean space. Previous results require the underlying convex functions or sets to be uniformly bounded. We relax this assumption and replace it with weaker integral constraints. The existing results can be recovered as special cases of our results.

متن کامل

Global risk bounds and adaptation in univariate convex regression

We consider the problem of nonparametric estimation of a convex regression function φ0. We study the risk of the least squares estimator (LSE) under the natural squared error loss. We show that the risk is always bounded from above by n−4/5 (up to logarithmic factors) while being much smaller when φ0 is well-approximable by a piecewise affine convex function with not too many affine pieces (in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011